José Manuel Bayod, catedrático de Análisis Matemático y Defensor Universitario de la Universidad de Cantabria, presenta el vigésimo octavo desafío con el que EL PAÍS celebra el centenario de la Real Sociedad Matemática Española. Envía tu respuesta a las dos preguntas que formulamos antes de las 0.00 horas del martes 27 de septiembre (medianoche del lunes, hora peninsular española) a problemamatematicas@gmail.com, entre los acertantes sortearemos una biblioteca matemática como la que cada domingo se distribuye con EL PAÍS. A continuación, para aclarar las dudas y en atención a nuestros lectores sordos, añadimos el enunciado del problema por escrito.El desafío de esta semana trata de operaciones con números muy grandes. Concretamente, vamos a tomar un número N que, escrito en base 10, tenga 100 cifras. El primero de sus 100 dígitos no puede ser 0, por lo demás no hay ninguna restricción. A continuación separamos N en dos números: el formado por las 50 primeras cifras, que llamaremos A; y el formado por las 50 últimas cifras, que llamaremos B. El desafío consiste en identificar todos los números N para los que se cumple que N=3AB. Como ejemplo, si en vez de trabajar con un número inicial de 100 cifras, lo hiciéramos con uno de dos, valdría el 24, ya que 24=3x2x4. En este caso, sería fácil hacer la comprobación en todos los números de dos cifras (entre el 10 y el 99) y descubriríamos que solo el 24 y el 15 cumplen la condición que se exige. Sin embargo, en el problema que planteamos la comprobación de todos los números no podría hacerse, ni siquiera por ordenador, en el plazo requerido. Es necesario, por tanto, un razonamiento matemático. Así, la solución que nos enviéis tiene que contener dos cosas. La primera es una relación de los números N que cumplan la igualdad anterior (N=3AB), si es que hay alguno, y no hace falta que nos digáis cómo los habéis obtenido. La segunda es un razonamiento que demuestre que no hay más soluciones que las que nos mandáis, es decir, que esos son todos los números de cien cifras que cumplen la igualdad. DESAFÍOS ANTERIORES Y SUS SOLUCIONES / ÁLVARO R. DE LA RÚA / JOSÉ LUIS ARANDA

Un problema de grandes números

José Manuel Bayod, catedrático de Análisis Matemático y Defensor Universitario de la Universidad de Cantabria, presenta el vigésimo octavo desafío con el que EL PAÍS celebra el centenario de la Real Sociedad Matemática Española. Envía tu respuesta a las dos preguntas que formulamos antes de las 0.00 horas del martes 27 de septiembre (medianoche del lunes, hora peninsular española) a problemamatematicas@gmail.com, entre los acertantes sortearemos una biblioteca matemática como la que cada domingo se distribuye con EL PAÍS.

A continuación, para aclarar las dudas y en atención a nuestros lectores sordos, añadimos el enunciado del problema por escrito.

El desafío de esta semana trata de operaciones con números muy grandes. Concretamente, vamos a tomar un número N que, escrito en base 10, tenga 100 cifras. El primero de sus 100 dígitos no puede ser 0, por lo demás no hay ninguna restricción.

A continuación separamos N en dos números: el formado por las 50 primeras cifras, que llamaremos A; y el formado por las 50 últimas cifras, que llamaremos B.

El desafío consiste en identificar todos los números N para los que se cumple que N=3AB. Como ejemplo, si en vez de trabajar con un número inicial de 100 cifras, lo hiciéramos con uno de dos, valdría el 24, ya que 24=3x2x4. En este caso, sería fácil hacer la comprobación en todos los números de dos cifras (entre el 10 y el 99) y descubriríamos que solo el 24 y el 15 cumplen la condición que se exige. Sin embargo, en el problema que planteamos la comprobación de todos los números no podría hacerse, ni siquiera por ordenador, en el plazo requerido. Es necesario, por tanto, un razonamiento matemático.

Así, la solución que nos enviéis tiene que contener dos cosas. La primera es una relación de los números N que cumplan la igualdad anterior (N=3AB), si es que hay alguno, y no hace falta que nos digáis cómo los habéis obtenido. La segunda es un razonamiento que demuestre que no hay más soluciones que las que nos mandáis, es decir, que esos son todos los números de cien cifras que cumplen la igualdad.

DESAFÍOS ANTERIORES Y SUS SOLUCIONES

ÁLVARO R. DE LA RÚA / JOSÉ LUIS ARANDA 22 SEP 2011 - 20:17 CET

Vídeos destacados

Ariana Grande se pasa a la imitación

Último día de lluvias en el sureste

El rescate del niño que olvidó sus llaves

07/09/15 Un día en un minuto

Detenido por encerrar seis años a su mujer y su hijo en una jaula

El desconcierto

Paraguas en la mitad sur

El niño refugiado sirio que emociona a Vine

Un ruso gana el campeonato mundial de hacer como que tocas la guitarra

Los incendios calcinan un 60% más de territorio que en 2014

Buñol se prepara para la Tomatina

“Un frenazo de China pondría en riesgo la economía global”

Arqueólogos alemanes hallan las huellas de un dinosaurio desconocido

Incertidumbre en Atenas tras el adelanto electoral

Hallado en Florida un tesoro de 350 monedas españolas de 300 años

Acosado por publicar fotos de sus hijos con animales de safari muertos

Un terremoto sacude los platós de la Fox mientras emiten la meteorología

El sospechoso del atentado de Bangkok que era actor e inocente

Una cámara en un coche recoge el instante de la explosión en China

Remiten las tormentas y suben las temperaturas

El vídeo de la detención de Sergio Morate

El caballo que cayó a un pozo de cables de fibra óptica

Parón del calor veraniego

Importante descenso de las temperaturas

A la caza y captura de las tortugas golfinas

Cambio de tiempo por el norte



Webs de PRISA

cerrar ventana