_
_
_
_
_

Demasiado rápidos esos neutrinos

Muchos físicos, incluidos tres Nobel, descartan que las partículas vayan más rápido que la luz Se estudian como pieza clave del universo subatómico

 El universo está llenísimo de neutrinos: miles de millones de ellos atraviesan cada segundo cada centímetro cuadrado del planeta, de cada persona, del agua, del papel de este periódico (o esta pantalla de ordenador)... Estas partículas elementales se producen, por ejemplo, en el interior de las estrellas por el simple hecho de lucir, o en las centrales nucleares; no tiene carga eléctrica ni apenas masa y atraviesan todo tipo de materia sin hacerse notar porque prácticamente no interaccionan con nada. Hay detectores para cazarlas tan exóticos como el IceCube, en el hielo del mismísimo Polo Sur, para buscar nuevas fuentes de neutrinos en el cielo. Desde que se propuso su existencia, hace 80 años, atraen un enorme interés entre los científicos por sus peculiares características y, ahora mismo, porque apuntan hacia horizontes inexplorados de la física. Pero hace tres meses casi les dan un buen susto, cuando los especialistas de un extraño experimento anunciaron que, según sus medidas, los neutrinos viajan más rápido que la luz, violando el límite de velocidad establecido en la Teoría de la Relatividad Especial de Einstein. Ese límite máximo de velocidad de propagación de interacciones, como dicen los físicos, está en el corazón mismo de dicha teoría.

“Miles de experimentos han confirmado a lo largo de los años, una y otra vez, que la Relatividad es correcta, nunca se ha visto algo como esto”, comentaba esta semana el estadounidense David Gross, Premio Nobel de Física (2004), en la conferencia inaugural del Instituto de Física Teórica (UAM-CSIC), en Madrid. Como él, la opinión prácticamente unánime entre los expertos es que algo falla en ese experimento, denominado Opera. “Tiene que estar mal, no puedo imaginármelo, no lo acepto”, añadía más tajante su colega Martinus Veltman, también Premio Nobel (1999).

En los tres meses transcurridos desde el anuncio de los neutrinos supuestamente superlumínicos (desencadenando lo que otro Nobel, Sheldon Lee Glashow, llama Odisea de Opera), no solo no se ha encontrado el fallo, sino que los científicos han mejorado notablemente parámetros del experimento y les sigue saliendo lo mismo. Pero la sospecha inicial de que algo está mal no se debilita, sino que se refuerza.

La teoría de Einstein establece el límite de la velocidad de la luz

“Si fuera correcto, si fuera verdad que los neutrinos son más rápidos que la luz, sería como quitar un ladrillo de la base de un edificio, del edificio de la física, y entonces se desmorona entero”, apunta Antonio González Arroyo, catedrático de la Universidad Autónoma de Madrid (UAM). “Puedes quitar un ladrillo de la parte superior y entonces haces ajustes pero el edificio se sostiene, mientras que si es de la parte de abajo... tienes que replanteártelo todo”.

Opera, cerca de Roma, mide los neutrinos que se lanzan desde el Laboratorio Europeo de Física de Partículas (CERN), junto a Ginebra, a 730 kilómetros de distancia y que atraviesan limpiamente la corteza terrestre (como estas partículas apenas interaccionan con otras, no hay quien las pare). Lo sorprendente es que, según los datos presentados a finales de septiembre, los neutrinos tardan en cubrir esos 730 kilómetros menos de lo que tardarían los fotones de luz. Sin embargo, la Teoría de la Relatividad Especial de Einstein establece que la velocidad de la luz en el vacío es el límite máximo de velocidad en el universo. Por eso dice González Arroyo que supondría quitar un ladrillo de la base del edificio de la física. “Va contra todo lo que conozco en física”, dice Veltman. “Y no sé, la verdad, si la Relatividad tendría arreglo”. Tampoco Gross sabe si sobreviviría la teoría especial de Einstein: “Pero no me estoy dedicando a algo que probablemente está mal”.

El detector de partículas IceCube está en el hielo del mismo Polo Sur

Los físicos de la conferencia del IFT consultados se manifiestan en la misma línea de incredulidad, porque no es que sea algo nuevo no sospechado antes —lo que podría ser un auténtico descubrimiento—, es que contradice lo demostrado con éxito en miles de pruebas experimentales de la Relatividad Especial, es incluso otras medidas de velocidad de neutrinos con mayor precisión. Como dice el catedrático de la UAM Enrique Álvarez, “si fuera verdad sería muy difícil de entender, habría que pararse a pensar todo desde el principio y haría falta un nuevo Einstein audaz para solucionarlo”. En cuanto a la posibilidad de hacer viajes en el tiempo, si los neutrinos violasen la Relatividad Especial, Gross la despacha rápidamente: “Ni siquiera hay que recurrir a eso, basta con la paradoja de que si uno viajase al pasado y matase a su madre de niña no nacería, no llegaría a existir para poder viajar al pasado y matar a su madre...”.

En los tres meses desde este anuncio de Opera se han propuesto muchos artículos científicos al respecto, pero a Gross no le impresiona: “Lo que hace falta es uno bueno que lo explique”, dice. Tanto él como su colega Veltman recuerdan que se escribieron miles de artículos sobre la fusión fría, anunciada en 1989, que resultó ser incorrecta.

De momento queda todo en suspenso hasta que otros dos experimentos (en EE UU y en Japón) repitan las pruebas de Opera y se vea si el efecto superlumínico se confirma o, como piensa la mayoría, se descarta. Tanta incredulidad se manifiesta en los supuestos neutrinos superlumínicos. González Arroyo se ve en la obligación de puntualizar: “No es que a los físicos nos desagrade lo imprevisto, al contrario: una cosa inesperada es como una puertecita que te da acceso a un coche que quieres inspeccionar por dentro y al que antes no sabías entrar. Pero esto de Opera no creo que sea ninguna puerta”.

“Las medidas de Opera contradicen todo lo que sé de física”, dice Veltman

Los neutrinos se estudian con enorme interés porque se sospecha que pueden ser una de esas puertas a lo hasta ahora inaccesible. De hecho, el último resultado de Opera es colateral, porque lo que está investigando el experimento (y otros en EE UU y en Japón) es una extraña propiedad de los neutrinos denominada oscilación. Hay tres tipos de estas partículas, y la oscilación es un fenómeno cuántico por el que, al recorrer largas distancias, los de un tipo de convierten en otro tipo y adquieren masa, aunque sea muy ligera.

“La masa de los neutrinos indica que hay una nueva física más allá del Modelo Estándar, más allá de la física que ya conocemos, y medirla y verificar qué tipo de masa es muy interesante”, apunta la catedrática Belén Gavela. Pone otro ejemplo importante del alcance que tienen estas partículas en la frontera de la física: “Con unos experimentos de oscilaciones de neutrinos probablemente estamos a punto de descubrir algo que se llama violación de carga y paridad (CP), que es un ingrediente para explicar por qué el universo que vemos está hecho de materia y no de antimateria”.

“Sería como quitar un ladrillo de la base del edificio”, aclara un científico

También los cosmólogos y los astrofísicos están enormemente interesados en los neutrinos. “Emiten neutrinos todas las estrellas que lucen y todas las explosiones de supernova... y puede que sean parte de la materia oscura caliente del universo”, señala, como un par de ejemplos, Juan García-Bellido, otro de los participantes en la conferencia del IFT. “Los neutrinos que se emitieron un segundo después del Big Bang, lo que se llama el fondo cósmico de estas partículas, permean ahora todo el cosmos con una densidad de unos 400 neutrinos por centímetro cubico”, añade.

Gross, en su charla, apuntó varias cuestiones abiertas de la física de frontera, más allá de la partícula de Higgs que tanto interés ha suscitado esta semana por los indicios de su existencia anunciados en el CERN. Entre varios misterios pendientes de respuesta y varias hipótesis y escenarios propuestos para abordarlos, destacó la masa de los neutrinos junto con incógnitas fascinantes, como la materia oscura o la aceleración de la expansión del universo. Lo de ir más allá de la física conocida, del llamado Modelo Estándar, no debe sorprender: al fin y al cabo, lo que Albert Einstein hizo con la gravitación fue ir más allá de Isaac Newton.

Opera, experimento muy complejo

En el experimento Opera, la medida de la velocidad de los neutrinos requiere medir con mucha precisión tanto la distancia recorrida entre el CERN [de donde parte el haz de esas partículas], y el Laboratorio de Gran Sasso [en Italia, bajo los Apeninos] sonde está situado el detector, como el tiempo empleado en ello”, explican José María Hernández Calama y Pablo García Abia, investigadores del Ciemat y miembros del equipo CMS del acelerador LHC, en el CERN. “Se utilizan complejos sistemas GPS que permiten medir con una precisión de 20 centímetros y 8 nanosegundos (8 milmillonésimas de segundo) la distancia (aproximadamente 730 km) y el tiempo de vuelo (unos 2.5 milisegundos) respectivamente”, continúan estos físicos experimentales.

Es un experimento difícil, añaden: “Los sistemas electrónicos que miden el tiempo de salida de los neutrinos desde el CERN y el tiempo de detección en Opera, así como la sincronización de los sistemas GPS, introducen un retraso en la medida del tiempo de vuelo del orden de mil nanosegundos, tiempo que es necesario calibrar y corregir. El control de estos efectos (llamados sistemáticos) con una precisión significativamente mejor que el efecto que se mide (un adelanto de unos 60 nanosegundos respecto al tiempo que tardaría la luz en recorrer la distancia CERN-Opera) es una tarea muy complicada”.

Este detector del laboratorio italiano de Gran Sasso está diseñado para registrar las señales de neutrinos de tipo Tau, que se originan por la llamada oscilación (fenómeno cuántico por la que los neutrinos de un tipo se convierten en otro tipo al recorrer largas distancias) a partir del haz de protones que se generan en el sistema de aceleradores del Cern. La medida de la velocidad de los neutrinos que ha armado tanto revuelo no era la idea original de Opera, pero los resultados obtenidos levantaron revuelo inter nacional.

“Vista la trascendencia de las conclusiones del experimento, es necesario esperar a los resultados de la medida de la velocidad de los neutrinos por otros experimentos, como T2K [en Japón] o Mienos [en EE UU], que arrojarán luz a la interpretación de las medidas de OPERA”, concluyen Hernández Calama y García Abia.

Regístrate gratis para seguir leyendo

Si tienes cuenta en EL PAÍS, puedes utilizarla para identificarte
_

Archivado En

Recomendaciones EL PAÍS
Recomendaciones EL PAÍS
Recomendaciones EL PAÍS
_
_